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Inverse functional relation on the Potts model 
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t Laboratoire de Physique Thtorique de L’Ecole Normale SupCrieureg 
$ Service de Physique due Solides et RCsonances MagnCtiques, CEN Saclay, Gif-sur- 
Yvette, France 

Received 20 November 1981, in final form 8 February 1982 

Abstract. The two-dimensional anisotropic Potts model at all temperatures satisfies a local 
inverse relation leading to an inverse functional equation on the transfer matrix. The 
pertinence of the related functional equation for the partition function is discussed and 
verified perturbetively, by introducing a diagrammatic expansion corresponding to a partial 
resummation on one parameter of the model. Possible exploitations of the inverse relation 
in order to determine the partition functions are sketched. This indicates that the inverse 
relation can be used without referring to a star-triangle relation. 

1. Introduction 

Ten years ago R J Baxter emphasised the importance of a generalised star-triangle 
relation for exactly soluble models in statistical mechanics (Baxter l972,1973a, 1978). 
More recently, this relation has also proved to be useful for some models of particle 
physics or field theory (S-matrix factorisation: Berg and Weisz (1978), Zamolodchikov 
(1979), Zamolodchikov and Zamolodchikov (1979); quantum inverse scattering: 
Sklyanin et a1 (1979), Kulish and Sklyanin (1979)). It has been shown that, from the 
star-triangle relation, one can deduce the commutativity of a family of transfer 
matrices. A linked concept, the Bethe ansatz (Bethe 1931), then enables transfer 
matrices to be diagonalised and the partition function to be calculated (Baxter 1972, 
1973a). As a byproduct of these notions a new relationship has occurred which is 
called the inverse relation. It is seen by Baxter (1980b), Stroganov (1979) and Schultz 
(1981) as a short cut and a practical tool for calculating the partition function. (A 
formal identification exists between this relation and the unitarity relation for the 
S-matrix, as has been remarked by Zamolodchikov (1979).) In this context, star- 
triangle and inverse relations seem to be linked. Gaudin (1979) has even observed 
that these two relations express the relations which generate the group of permutations 
(Coxeter and Moser 1972). Nonetheless, the question remains of whether the inverse 
relation can be used independently of the star-triangle relation. Furthermore, the 
inverse relation concept is not clear as regards the following point: if this local relation 
leads in a clear way to an inverse relation concerning an object with a global character, 
the transfer matrix, does it lead to a functional relation for the partition function? 

The purpose of this paper is to reply positively to both these questions: we shall 
exhibit the matrix inverse relation and the associated functional relation for the 
anisotropic Potts model at all temperatures, and not only at the critical temperature 
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T, where it is known that the star-triangle relation occurs. In 92 we discuss the 
inverse relation concept. Firstly, we recall how the local relation implies the global 
matrix relation sought. Secondly, we write and discuss the functional relation to be 
verified by the partition function. In Q 3, since an analytical knowledge of the partition 
function is not yet available, we verify the reality of the preceding functional relation 
using a diagrammatic expansion. As the usual expansions are insufficient, we introduce 
a new diagrammatic expansion which corresponds to a partial resummation on one 
of the two variables of the anisotropic model. In 0 4 the problem is looked at again 
finally from another point of view: the exploitation of the inverse relation which we 
consider, now, to be valid. 

2. Inverse relation for the Potts model 

We first sum up the q-state, scalar, two-dimensional anisotropic Potts model for a 
square lattice (see figures 1 and 2) (Potts 1952, Baxter et a1 1978). The following 
conventions are adopted here: if cri and uj belonging to 2, are in the same state the 
statistical weight associated with this vertical bond will be c, if not it will be + 1 ; if 
uj and U k  (horizontal bonds) are in the same state it will be 6, if not it will be +l. 

Figure 1. Figure 2. 

The partition function is therefore 

where the products are to be taken over all the horizontal and vertical bonds and the 
sum is to be taken over all the configurations of spins. 

2.1. Matrix inverse relation 

Let us rapidly find for the Potts model the inverse relation verified by the local 
statistical weights and the global inverse relation on the transfer matrix. Consider the 
algebraic method presented by Temperley and Lieb (1971). Let A, B, C, . . . be the 
N sites along a line and A’, B’, C’, . . . be the N sites on the line above as shown in 
figure 3. Reintroduce the notations of Baxter et a1 (1978): UA, U,, UC, . . . designate 
spins at sites A, B, C, . . . and U A ~ ,  U,,, uc, . . . at sites A‘, B’, C’, . . . ; VA (resp. WAB) 
are operators corresponding to adding the vertical edge AA’ (resp. the horizontal 
edge AB),  and similarly W , ,  VB, etc. . . . They can be written as qN XqN matrices 
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Figare 3. 

with lines indexed by U' = {uAJ, aB,, . . , } and columns by U = {UA, UB, . . .}. The corres- 
ponding elements are then 

(vA)u', ,=[l+(c-1)s(aA, UX)]s(U's, C B ) S ( C k ,  UC) * * * 

( 1 )  
( ~ A B ) ' , U = [ ~ + ( ~ - ~ ) S ( ~ A , ~ B ) I S ( ~ ~ ' ~ , O B )  * * 9 

(S is the usual Kronecker symbol) and in a similar way for VB, W B ,  . . . . It is easy 
to verify that 

v A ( C )  v A ( 2 - q - c ) =  (c - 1 ) ( 1  - q - c ) l  ( 2 )  

wAB(b) WA€J( l /b)=I  ( 3 )  

where I is the identity matrix. 

of two matrices: T = TI T2= (. . . VcVBVA)(. . . WCDWBCWAB), and therefore 
The transfer matrix that sends the line underneath to the line above is a product 

Tl(C) Ti (2  - 4  - C )  = (C - l)N(l - 4 - c ) ~  I (4) 

T2(b) . Tz( l /b)  = I .  ( 5 )  

?'(b,~) ~(1/6,2-q-~)=[(~-l)(l-q-c)]~~. (6) 

Instead of T, introduce i; = Til2 Tl Til2 which then satisfies 

One can see that simple local relations such as (2) and ( 3 )  (which can be represented 
graphically as in figure 4 )  lead to a similar relation for a global object such as P(b, c) .  

Figure 4. 

2.2. Functional equation for the partition function per site 

We shall now look at what the consequence of relation (6) might be on the partition 
function of the model. Designate the number of lines by M. With the usual periodic 
conditions, the partition function is equal to the trace of the products of M transfer 
matrices F :  2 = Tr(f)M. At the thermodynamic limit, the 2 notation will be used 
for the partition function per site 

lim z ' ' ~ ~  
'U-a, 
N-bm 
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and thus Z will be equal to the Nth root of the largest eigenvalue of the transfer 
matrix. Let In) be the eigenvector corresponding to the largest eigenvalue A (6, c) of 
?(b, c). Equation (6) leads to 

F(b, c )  * F(l/b, 2 - q - c)Jn> 

= F(l /b ,  2-q-c)F(b, c) ln> 

= (c - l)N(l -4 - c ) N l n )  

=A(b, ~ ) F ( l / b ,  2-q-c)lR) 

(7) 

and empirically 

= A (b, c)A (1/b,2 - 4 - c)ln) (8) 

Z ( b , c ) * Z ( l / b , 2 - q - c ) = ( c - l ) ( l - q - c ) .  (9) 

and in consequence 

Care is necessary, however. Let us study equalities (7) and (8). The equalities (7) 
need no further discussion, as they arise from the previously established hypotheses: 
F(b, c)  and F( l /b ,  2-q - c )  are inverse matrices up to the multiplicative factor 
(c - l)N(l - q  - c ) ~  and therefore commute; In) is an eigenvector ,Of F(b, c )  with 
eigenvalue A (b, c). From equalities (7), In> is also an eigenvector of T(l /b ,  2 - 4  - c )  
with eigenvalue [(c - l ) N ( l  - q - c ) ~ ] / A  (b, c )  deduced. More can be deduced from 
equality (8): this equality confirms that this last eigenvalue is merely A(l/b, 2 - 4  - c ) ;  
in other words, that one is dealing with the same function for different arguments 1 / b  
and 2-4-c. What is meant by saying the same function? This does not mean the 
partition function with the new values for the parameters. Let us consider, for example, 
the two-dimensional Ising model. The inverse relation is then (b, c )+  (l/b, - c )  or, 
with the usual notations for the coupling constant, ( K I ,  Kz)+ ( -K1, Kz+i.rr/2). The 
partition function for the new parameters, with the usual periodic conditions, is defined 
as 

z( -K1, K2 +ir /2)  = n e-K1uzui n e(K2+in12)u,uk 
{U) (ii) ( ik)  

= n e-Klunui fl (iapk) eKZuiuk 

{U) (11) ( ik)  

which is simply (up to a multiplicative factor *i) Z( -KI ,  Kz) = Z(K1, K2). 
Equation (9) would then indicate that 2’ is a known function. It is easy to verify 
that this is not the case. 

Accordingly, one can see that equation (7) must relate the largest eigenvalue of 
F(b, c) to the smallest eigenvalue of ?(l/b, 2-q - c ) .  From the situation of finite N 
it is natural to consider that relation (9) takes place between the function A (6, c), or 
the partition function Z ( b , c ) ,  and an analytical continuation of this function at 
(l/b, 2-q - c )  (Baxter 1980b). One can verify that this interpretation is correct in 
the thermodynamic limit for the simple case of the one-dimensional Ising model (with 
magnetic field). For more delicate cases Stroganov (1979) and, especially, Baxter 
(1980b) seem to justify this fact by considering the complete integrability of the 
models. In these cases a family of commuting transfer matrices exists, with a 6 
parameter describing an algebraic curve. There is therefore an analytical path which 
leads from the eigenvalue of the transfer matrix at the point 0, A(@), to its analytical 



Inverse functional relation on the Potts model 2245 

continuation at the inverse point - 8. In practice, Baxter writes such a relation only 
once he has established the complete integrability from the generalised star-triangle 
relation, and once he has been able to uniformise this relation. However, examples 
exist of models possessing an inverse relation for which a star-triangle or an equivalent 
relation is not yet known (rubber bands and percolation models, two-dimensional 
non-planar or with-field models, three- and even higher-dimensional Potts models 
(Jaekel and Maillard (1982)). 

In particular, that is the case for the Potts model at all temperatures. There, no 
parametrisation exists, as in the Ising case, to reduce the set of parameters to a single 
variable: in fact, this problem seems to truly involve two complex variables, and any 
justification of (9) seems to be more complicated. The best way to be convinced of 
the relation (9) is to show it directly using empirical methods. As an analytical solution 
for the partition function in the Potts model is not yet available, we shall use expansions. 
In this way we shall have shown, up to a certain order, that equation (9) holds for 
the Potts model at all temperatures (and not only at the critical temperature T, where 
the model is known to be completely integrable). This will thus simultaneously 
provide an example of the fact that the generalised star-triangle relation and the 
inverse relation are not mutually dependent. 

To conclude this section let us remark that this discussion is not limited to the 
largest eigenvalue. If we let A,@, c) be a generic eigenvalue, with the same reserve, 
the functional equation can be written as 

A, (6,  c)A ,  ( 1 / b ,  2 - 4 - C )  = (C - l)N(I - 4  - c)~. 
For instance, if A l(b, c) designates the second-largest eigenvalue, one has the functional 
equation 

A(b,c)  A ( l / b , 2 - 4 - ~ )  
Al(b, c )  Al(l/b,  2 - 4  - c )  = 

This is easy to verify in the special Ising case using the interface energy expression 
(Watson 1977). 

3. Diagrammatic expansion for the Potts model 

A standard low-temperature expansion such as that of Kihara et a1 (1954) 
l/b + 0, l / c  + 0) gives 

Z(b,  c )  = bc[ 1 + (m) q-1 + 9 * .] = bc A(b, c).  

The simplest and most elegant way of obtaining this expansion is to use a method, 
explained for example by Ginsparg et a1 (1980), which is based on exploiting the 
characters of the group 2,. For instance, the first term (4 - l ) / b 2 c 2  corresponds to 
the diagram 0, the following term (4 - l)/b4cZ to -1 , the term (4- 

1)/b2c4 to U , etc. . .. 
In order to use relation (9) it is necessary to have available the expansion of the 

same analytical function about a point and about the inverse of the point. In the 
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preceding expansion we see that if l / c  - 0 is effectively stable by c + 2 - q - c, on the 
other hand l / b  -0 becomes 1 / b  -CO. The standard low-temperature expansion is 
thus not stable under the inverse transformation. It is therefore not possible to use 
it in equation (9). 

The type of expansion one needs to exploit (9) is, for example, one with small l / c  
values and arbitrary values for b. Fortunately, it is possible to obtain this new type 
of diagrammatic expansion, as we shall now show. We wish to obtain an expansion 
in powers of l / c ,  so let us look at all the terms in 1/c2: 

q - 1  q - 1  . . .  

It is easy to sum over all these diagrams, which compose a geometrical series, to obtain 

The function f(b) = l / (bz - 1) analytically extends the preceding series outside its 
convergence disc 1 16) < 1. Let us now look at terms in l /c3.  From the diagrammatic 
point of view they are of the form 

UII  
- p - q - -  

where p, q 2 1. A straightforward summation over all these terms gives 

It is then natural to represent the series diagrammatically by one of its elements, thus 
not having to take the length variation of the different sections explicitly into consider- 
ation. For example, at fourth order 

will represent the diagrams 

where p, q, r 3 1. The corresponding contribution is 

These diagrams differ for example from the following ones: 
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of contribution 

One can convince oneself that this type of partial resummation in b extends to all 
orders l/c". It therefore gives the type of expansion we need. Let us then insert this 
expansion into relation (9), which we now write in the form 

(c- l ) ( l -q-c)  

The diagrammatics for lnA(b,c) differs from that for A(6,c) in the counting of 
disconnected terms and of course in the initial term + 1. Thus, up to second order, 
the left-hand term in (10) is 

and the right-hand term in (10) is equivalent to 

In ( 1+- q;2 + F ) - l n ( l + s ) = q + .  1-4 C . . , 
This shows how the two terms in l /c2 combine together on the left-hand side of 
equality (10) to give a term independent of b. We have verified equality (10) up to 
order l / c 5  in appendix 1. It is instructive to examine the details of these calculations. 
In particular, relation (10) imposes strong restraints on the expansions. For instance, 
one can see, in contrast with the king model (4 = 2) for which only 1/(b2- 1)"-type 
singularities appear, that, in the general case of the Potts model, singularities at the 
nth root of unity occur: for the coefficients of l/c2' and 1/c2'+', singularities at 6'' = 1 

occur for all rl integers s r + 1. For example, the term 

contributes 4 
C 

It is then interesting to see how all the singularities from the two expansions combine 
together and successively eliminate, starting from the strongest one. To conclude this 
section we have also verified, in appendix 2, the inverse relation at all orders l / c "  
on the leading diagrams in q. 

4. Uses of the functional equation 

4.1. Diagrammatic approach 

Let us look at the expansion and the inverse relation, this time from a different 
point of view: we shall use them to try to resolve the partition function. Let us describe 
all the terms up to a given order l/c2'. It is easy to describe terms having a single 
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singularity bZ = 1. The largest-order pole is obtained from the following diagrams: 

n m  
I I 1 

or I' '11 or . . . . 
Of course smaller-order poles occur, but there is only a single diagram which gives 
the simple pole: 

I I t  

It seems possible to regroup all these terms in a simple expression 

- 1 Pr(b2) 
C 2 r  (bz  - 

where P, is a polynomial of order 2 ( r  - 1 )  with rational coefficients. Baxter (1980b) 
took advantage of this compact form for the Ising model where effectively only the 
singularity b2 = 1 occurs. The inverse relation becomes (6, c ) + ( l / b ;  - c )  and the 
functional relation 

In A(b, c)+ln A ( l / b ,  -c )=ln  ( 1  - l / c Z ) <  

Introducing 

1 P,(b2) 
In A(b, c )  = 1 - 

cZr  (b2-  l)zr-l 
one has for P, 

This relation indicates that, if the first r - 1 coefficients of P, are known, the polynomial 
P, can be determined completely. If one now assumes in a given recurrence that one 
knows Pl . . . P,-l, then from the symmetry In A(b, c) = In A(c, b )  one can determine 
the preceding r - 1 coefficients of P,. This is true for all r values, and one can therefore 
use only the inverse and symmetry relations to calculate the successive terms of the 
partition function in a unique way. 

Let us come back to the general case of the Potts model. As far as the other 
singularities are concerned, we have already seen that they are of the b" = 1 (rl s r + 1 )  
type. The order of these poles decreases for increasing r, eventually becoming a simple 
pole for rl = r + 1 with diagrams such as 
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There is a large number of terms, mixing all these singularities, as for example 

For this reason, any compact form for the l/c2' coefficient will depend on many more 
coefficients than in the Ising case: the information obtained from the symmetry is not 
enough to determine all of them. These considerations apply to the 1/c2'+' coefficients. 
Thus, a recurrence of the type Baxter used for the Ising case seems to fail here. 
However, we have not used all the information at our disposal. For example, all the 
relations one writes must be verified for all 4 values. The 1/c2' coefficient is a rational 
function in b2 and a polynomial in 4 with rational coefficients. More detailed studies 
of the 4 dependence could enable the various diagrams to be investigated in a more 
selective manner. For instance, it has already been seen that diagrams possessing the 
maximum number of loops automatically satisfy the inverse relation (appendix 2). 

4.2. Analytical approach 

Rather than determining the partition function perturbatively, it is possible to imagine 
determining it globally from the preceding functional equation and from the symmetry 
equation 

Z(b,  c)Z(l /b,  2 - 4 - c ) = - ( c - l ) ( c + q - l )  (1) (12) 

Z(b,  c )  = Z ( c ,  b )  ( s ) .  (13) 
These two equations are to be viewed as equations between the partition function 
and its analytical continuation (though the analytical situation might not be clear with 
this set of variables; see appendix 3). These equations are very like the functional 
equations for automorphic functions. From this point of view, the partition function 
is a sort of generalisation to several complex variables of automorphic functions. 
Indeed, the two transformations, inverse and symmetry (I and s), generate an infinite 
group G. One can see that this group G satisfies the exact sequence 

O+ 2 + G -* 22 -* 0 

and is compatible with the 'automorphic' factors appearing in equations (12) and (13). 
G also possesses a special element 

 SI)^: (6, c ) -* (2  - 4 - -, 1 1  -) 
b 2 - 4 - c  

transforming b and c separately. The fixed points of these two transformations are 

4+ = 1 - $4 f $me 
If we now consider new variables 
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the transformations I and s take the simple form 

It can be seen that a knowledge of the partition function at some point (bo, co) or 
(xo, yo) determines the function at an infinite number of points. It is known that 
functional equations of that type do not determine the function in a unique way (the 
function can be chosen arbitrarily on the fundamental domain). Such a system of 
equations is nonetheless restrictive. It can be rewritten with new variables x and y :  

1 4: (1 +x/4+)(1+ 1/4+x) 
Z(X, Y )  z(-, -) = -44+ (1 -x) ( l -  l / x )  X Y  

Z ( X ,  Y) = Z(Y, X I .  (16) 

Let us first consider the special case of the critical temperature (b - l)(c - 1) = 4 
or xy = -4+. The problem being reduced to one with a single complex variable, it is 
then possible to find the partition function directly from equations (15) and (16), and 
a maximal analyticity assumption. As we are at T = T,, which is a curve (xy = -4+) 
stable under the group G, the symmetry ( s )  is expressed by x -* -4+/x and the inverse 
(I) byx -P l/x. Introducing the notationf,(x) = f ( g ( x ) ) ,  equations (15) and (16) become 

* &=-qq+L LI z=z, 
with 

1 + x/4+ L(x)  = -. 
1 - x  

Letting 

A satisfies A = L 0 A(SI)2. One can see that 

A ' A s  A(x)4(-4+/x)  (18) x -- = L 4 4 + - ( x ) = d Z  
4 7  3 ASIASIS A (  - 4+x)A(4:/x) 

satisfies (15) and (16) (Jaekel and Maillard 1981). 
The physical difference between 4 < 4  and 4 > 4  appears here to be natural. 

Recalling equation (14), expression (18) only has a meaning for 4 =- 4 or 4 < 0 where 
the expression converges. When 0 < 4 < 4 the transformation ( ~ 1 ) ~ ~  : x -P 4:" x does 
not converge to a fixed point (4+ lies on the unit circle 14.1 = 1). Nonetheless, it is 
known that the partition function can be obtained at T, for any values of 4 (see (46b) 
and (46c) in Baxter et a1 (1978)t). In the case 4 < 4  or 4 = 4 expression (46c) of 
Baxter et a1 can be obtained using the Malmsten representation of lnr(z) (Magnus 
et a1 1972). So, even in the case 4 ~4 where the infinite product (18) has no meaning, 
it is possible to obtain the desired result by an analytical continuation in the 4 variable, 
Let us notice that this gives a result even for the 4 = 0, 1 ,2 ,  3 , 4  cases where not only 
14.1 = 1, but also G is a finite group. It is interesting to note that in the Ising case the 
group G can be seen either as a finite group with the preceding rational uniformisation 

t The correspondence with the variables used in Baxter er a1 is as follows: -q+ = e2*, x = eZQ1, y = e2Q2. 
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or as an infinite group with the usual elliptical uniformisation (see appendix 3)t. 
Expression (18) has been obtained for the Potts model without using the known 
connection with the six-vertex model (Baxter et a1 1978). This connection would 
have led us to use, more or less directly, the star-triangle relation or the Bethe ansatz. 
This approach sheds some light on the fact that Eulerian products often occur in 
exactly soluble models, as Baxter et a1 (1975,1976) have already noticed. The ‘natural 
parameters’ they were led to introduce can be seen to be the variables for which the 
action of G becomes multiplicative. Moreover, equation (18) shows that the inverse 
relation and the symmetry relation can also lead to elliptical curves. 

Coming back now to the general case of all temperatures, because of the presence 
of two complex variables it is necessary to state more information about the function. 
For example, if some maximal analyticity hypothesis was enough for the case of one 
complex variable, the nature of the analyticity of the partition function is here more 
difficult to state. The diagrammatic expansion just provides analyticity in b for l/c 
small and in c for l/b small, and appendix 3, for instance, shows that the partition 
function might not be uniform for arbitrary b and c. Here, the information at our 
disposal for the Potts model is the following: the partition function is known in some 
particular cases b or c = 1 (one-dimensional model), T = T, (Baxter et a1 1978), 
q = 1 (obvious), and in certain neighbourhoods thanks to expansions; high- or low- 
temperature expansions (Kihara et a1 1954), large-q expansions (Ginsparg et a1 1980). 
We also have the exact latent heat at T = T, (Baxter 1973b) (it is related to the 
spontaneous polarisation of the six-vertex model, which surprisingly does not depend 
on the anisotropy of the model at T = T, but only on q+). Finally it can be verified 
that the Kramers-Wannier duality (Kramers and Wannier 1941) is consistent with 
the group G. From this point of view, the problem still seems to be difficult, as one 
has to deal with functions of several complex variables. To illustrate this one can (for 
q > 4) envisage making the following change of variables and functions: 

From (15) and (16) we can see that 
deduced: 

and thus Z(A, M )  = i ( A ,  4 : ~ ) .  
If 2 were regular around the point (A,  CO), then it would be possible to write 

i ( A ,  p )  = i ( A ,  CO), and thus f and g would exist such that Z ( x ,  y )  = f (x) f (y )g(ny) .  
But this is ruled out, as can be seen on a large-q expansion for instanceS. 

satisfies the symmetry and inverse relations 

20, p )  * i ( q l / A ,  l/q:p) = 1 Z(A, P I  = i ( A ,  1/cc) 

5. Conclusion 

We have shown, for the Potts model, the existence of a matrix relation, the inverse 
relation, and of a corresponding functional equation for the partition function. In 
t Since completing this work we have become aware of a preprint by Baxter which relates the critical 
hard-hexagon model to the critical Potts model for q = (3 +J5) /2.  It is amusing to remark that for this 

$ We havecomputed the large-q expansion of In2 up to sixth order in JX and anisotropic in x/ -q+ 
and y/J-q+ (to be published). This development is in perfect agreement with the infinite-product solution 
for Z at T, and also with the latent heat, but does not have the factorisation property Z = f(x)f(y)g(xy). 

particular value of q the group G is finite of order 10. - 
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order to verify this functional equation we have introduced a new diagrammatic 
expansion corresponding to a partial resummation on one variable. One can remark 
that this resummation also holds in three dimensidhs (Jaekel and Maillard 1982). We 
have verified this functional equation up to fifth order and we have then outlined 
some of the uses of this inverse relation. The method of the inverse functional equation 
possesses several advantages. It can be easier to use than the traditional methods, as 
we have seen on the Potts model at T,. It can be used for problems where the Bethe 
ansatz is not yet known, but for which a star-triangle relation exists-this is the case 
for Baxter’s (1980a) hard-hexagon model-and it can be used for models where no 
star-triangle relation is known to exist. These advantages are still relevant when we 
consider higher-dimensional models. As far as the three-dimensional equivalent of 
the generalised star-triangle relation is concerned (the tetrahedron relation), it is still 
difficult to find any non-trivial solution. It is even less obvious to find an equivalent 
of the Bethe ansatz. In this context one can find inverse relations for various problems: 
one-dimensional problems (rubber bands, percolation, directed percolation), two- 
dimensional Ising or Potts models (even non-planar or with field), and three- and 
even higher-dimensional models (with or without field) with corresponding functional 
equations. Furthermore, the new diagrammatics described here which is relevant to 
the inverse relation also exists for the previously cited models (with the exception of 
directed percolation). One can then verify with these models the exactness of the 
functional equation for the partition function, and apply the methods developed here, 
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Appendix 1 

A unique diagram will represent all the diagrams which can be deduced from one 
another by symmetry. For instance 

r-r-- 
will represent itself and 

at order 1: I ]  y(&) 
c 
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r 

2253 

4 - 1  (b2+1)2 
which sum to give Q 

c ((b2-l)') 

c4 
summing to 

E E I l  c4 b 2 - 1  

and at last the disconnected term 

(4 - 
P.4 - 1 

1 
1 

atorders:  I 
c 

2(q - l)(q -2Nq - 3) 
(b3-l) '  

summing to 

4(4 - 1)(4 -2) 
(b3 - l)(b2 - 1) 
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4(q - l ) (q  - 212 
( b 3 -  1)(b2-  1) summing to 

and at last the disconnected term 

Let us sum In A(b, c)  and In A(l/b,  2-q - c ) :  

b 2 -  1 
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This gives at order 1 /c2  

4 - 1  

and at order l / c 3  

2(4-1) (4-2)  b2 
c 3  c3 ( b 2 -  1 )  

- (4  - 1)(4 - 2)  - 
c3 

For higher orders, as the number of terms is increasing rapidly we just sketch the 
calculation. At order l / c 4 ,  consider first the terms with a b3 - 1 singularity. Summing 
up the same diagrams in In A(b, c )  and In A( 1/b,  2 - 4 - c )  

we see how the b3 - 1 singularity disappears, and the same for the b2 - 1 singularity 
as well, leaving a constant term 

2 
-3(4 - (4  - l ) ( q  -2)  . 

At order l / c 5 ,  as before, the pole of order two for the b3-  1 singularity disappears: 

Regrouping this term and the other simple poles at b3 = 1, one obtains 

so that the b3 - 1 singularity vanishes. Adding the remaining terms leads to the constant 

( 4 - l ) ( 4 - 2 ) 3 + ( 4 - 1 ) 2 ( 4 - 2 ) .  

Comparing all these results with the expansion 

In 1+- 4 - 2  +F) 1-4 -In( 1 +T) 4 - 2  
( c  

one verifies that the functional equation is satisfied up to fifth order. 

Appendix 2 

Consider order l / c "  and more precisely the diagrams of order n - 1 in 4 :  in the 
expansion of In A(b, c) there is only one such diagram: - 
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It has n - 1 loops and n vertical bonds. Its contribution is 

(4  - l)(q 
c"(b2-1)"-l * 

The expansion of In A(l/b,  2 -4 -c )  includes the same diagram with contribution 

or 

(at order l /c")  and also contributions coming from the expansions of a similar term 
for n = 2,3,  . . . , n - 1;  for instance, 

(2 - 4 - c)"-' 

gives the term 

( -  c)" b2- 1 

and, in a more general way, 

is obtained from 

The sum of all these contributions is 

(4 - 1)(4 - 1 -b2 
C" [(b2-l)"-'+(=) 

- - ((I - 1Nq 1 + [ (1 -A) n- l  - 1]( - 1 ) j  
C" ((6'- l)"-l 

(4 - l)(q - 2)"-2( - l)"+' - - 
C" 

On the other hand, the expansion of 

In 1+- + F ) - l n ( l + T )  4 - 2  ( " ,"  

gives us, at order l / c "  and for the q"-' term, 

(4 - 1)(4 
C" 

( -  l)"+l 
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Appendix 3 

To illustrate the analytical inadequacy of a certain choice of variables, let us come 
back to the king model. In this case, s and I (symmetry and inverse) generate a finite 
group: ( s ~ ) ~ = e  (e  is the identity). Consider the corresponding sequence of 
transformations 

1 1-6‘ z -- -- =- ( b’ f )  1 - l / c 2 Z ( b ’ C )  

1-6’ 1 - l / b 2  
Z ( b ,  c )  = - - Z(b,  1-1 /c2  1-c2  

This leads to an apparent contradiction which expresses the fact that Z possesses 
several determinations. 
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